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On the Solution of the Equations Arising from
Collocation with Cubic B-Splines

By Richard F. Sincovec

Abstract. An iterative technique for solving the equations arising from collocation with
cubic B-splines in solving second-order nonlinear boundary-value problems is defined and
shown to converge.

1. Introduction. Consider the boundary-value problem of the form
(1.1a) o= fx, p, 90, 0<x <1,
(1.1b) y(0) = 4, y(1) = B.
We assume that f(x, y, z) has continuous derivatives which satisfy
(1.2) |0f/3z] < P*, 0 <0, = 9f/dy = 0%,

for some positive constants P*, 0*, and Q.. The assumptions (1.2) not only guarantee
the existence and uniqueness of a solution of (1.1) but are essential for the develop-
ment of the theorem that is given in Section 3.

In this note, we consider the solution of the sets of equations that arise when
problem (1.1) is solved by the usual collocation method using cubic B-splines, [1],
[3] and [5]. In particular, we give an explicit condition on the mesh size based on
(1.2) such that all approximating problems with sufficiently fine mesh have unique
solutions which can be obtained by an explicit, globally convergent iteration.

2. Derivation of Equations. Let = be a uniform partition of [0, 1]: 0 = x, <
x, < -+ < xy = 1, let h denote the partition width 1/N, and let Sp‘®’(r) be a
spline function of third degree subordinate to =. The space Sp‘®’(r) has dimension
N 4+ 3. A basis for Sp‘®’(x) consisting of splines of minimal support, which we denote
by S,i=—1,0,1,---, N+ 1,is given by Schoenberg [5]. The following table of
values will be all we need:

\xi-z X1 x; X1 X1

@1 S, |0 1/4 1 1/4 0
N ) 3/4h 0 —3/4h 0
NASII) 3/2n° —3/K 3/2h° 0
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We seek an approximate solution of (1.1) in the form of a cubic spline subordinate
to m:

N+1

2.2) S= 2 s,

i=—1
by forcing it to satisfy the boundary condition as well as the differential equation
exactly at N + 1 points in [0, 1]. It is natural, though it seems by no means necessary,
to require the satisfaction of the differential equation precisely at the joints of .
Thus, we have the following system to solve for a = (a)):

N+1

(2.32) 20, 87(x) = f(x, S(x.), $'(x)),  i=0,1,---, N,
(2.3b) > a,5,00) = 4, > @;8;(1) = B.

i=—1 i=—1

The existence, uniqueness, and convergence rates for spline approximations to
(1.1) via collocation have been established in very general circumstances, [1], [3],
and [4], which, of course, is a primary virtue of collocation. The difficulty is in giving
circumstances in which one can guarantee that he can solve the approximating
problem (2.3) by an explicitly defined method.

3. Solution of Equations. The Egs. (2.3a) are, from Table (2.1),
G.)  a = 20 + o = 3Cf(x,, S&x), S'(x)), i=0,1,---, N,

where S(x;) is given by (2.2) and S'(x,) is the derivative of S(x) evaluated at x = x,.
The simplicity in forming (3.1) illustrates another primary virtue of collocation.
That is, forming the approximating problem via collocation is nearly as easy as
traditional finite differences in contrast to Galerkin procedures.

We propose the following iteration scheme for solving this set of nonlinear
equations:

(3.2a) o} = arbitrary, 0= i

lIA

N,

I

MR , , K , y
=1+ w) 1[— (i1 + o) + wa, — 7 f(x,, SCx,, &), S'(x,, @ ))] ,
2 3
(3.2b)
0Zi=N, v=20,1, -+,

(3.2¢) o' = 44 — 4a) — o, avs1 = 4B — day — oy_, v=20,1, -,

where we write S(x, «) to indicate which values of « are used in (2.2). Equations
(3.2c) are obtained from Egs. (2.3b) with the aid of Table (2.1).

We can now state the following:

THEOREM. Let f(x, y, z) have continuous derivatives which satisfy (1.2). Then
the system of equations (2.3) has a unique solution for each h such that h*Q*/3 +
hP* < 2. This solution is the limit of the iterates {«”} as v — © defined by (3.2)
with any finite w satisfying o = h*Q*/3. The convergence factor for this scheme is
at most

Aw) =1 — 1°0,/2(1 + w).
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The proof of the preceding theorem: is essentially identical to that given in [2]
for the finite-difference treatment of problem (1.1) and hence it will not be given
here.

An important observation is that the scheme (3.2) converges for any initial esti-
mate «(”, 0 < j < N, provided w = h°Q*/3. The analysis also reveals that the
best value for w is the limiting value w = h*Q*/3. Of course, even with this choice,
the convergence may be extremely slow since Mw) = 1 — O(h®) can be close to

unity.
The extension of these results to the more general boundary conditions
(3.3) g:(»(0), y'(1)) = 0,  g(1), »' 1)) = 0,

creates no essential difficulties if (3.3) can be used to obtain successive approxima-
tions to «_; and ay,; as well as preserve the contraction property of the iterative
scheme.

As a final remark, it should be noted that the proof of the Theorem yields an
elementary proof of convergence of cubic spline collocation approximations to the
solution of the nonlinear boundary-value problem.
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